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An expression is derived for the interaction potential arising from the correla- 
tive vibrational motion of fluctuating dipolar diatomic molecules, using as 
model the Morse oscillator. The theory is applied to two interacting NaC1 
molecules. The vibrational dipole-dipole coefficient, C6, is strongly tem- 
perature dependent with a value at room temperature of 3.788x 
10 .62 erg cm 6. 
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1. Introduction 

The reaction-field approach to long-range intermolecular forces [1] treats the 
interaction as arising from the correlations of the charge-fluctuations in neighbor- 
ing molecules. The fundamental quantities in terms of which the interaction 
potentials are expressed are the dynamic polarizability tensors c~(w)= 
o~'(to) - iot"(w), where ot'(~o) and ot"(w) are respectively the real and imaginary 
parts of the complex polarizability ~(w) which, in general, depends on frequency 
and temperature. The pair potential for two interacting molecules, i and/', whose 
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centers are a distance R apart, may be written [2] 

2~ .Re  idtotr(~tl'T12"oL21"T20coth2hkT 
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(la) 

where h and k are Planck's and Boltzmann's constants respectively; T is the 
absolute temperature and 7'12 is the dipole coupling tensor 

[ r  3RR]  
T12 = R - S  i_ R 2 J" 

The pair potential can be written alternatively and more concisely as a function 
of the polarizabilities, ot(-iy0, along the imaginary frequency axis where the 
polarizabilities are real and nonvanishing only at the discrete points -iy~ (l = 
0, 1, 2 . . . ) .  In terms of these o~'s, ~b ~2~ takes the form [1, 2] 

~b ~2~= -kT ~' tr [etl(-iyt) �9 t~2(-iyl) �9 I'21] (lb) 
/ = 0  

where the prime on the summation sign denotes that the leading ( l --0)  term is 
b 1 multiplied y ~. 

Expressions (la) and (lb) have been applied to the forces arising from fluctuations 
of electronic coordinates, to forces produced by fluctuations of the rotational 
coordinates, and to the forces arising from combinations of electronic and 
rotational fluctuations [3]. These fluctuations give rise respectively to the disper- 
sion, orientation and induction forces [1-3]. The electronic fluctuations are 
essentially of quantal origin and at ordinary temperatures the dispersion and 
also the induction interactions are temperature independent. In contrast, the 
rotational fluctuations are essentially of thermal origin, and the orientation (or 
Keesom) potential is temperature dependent. The orientation potential is useful 
in the treatment of polar fluids; in fact, when the correlation time for rotational 
motion is much faster than the collision time the orientation potential is the 
appropriate potential for dipolar interaction. 

In the present paper, we examine the effects on the interaction arising from 
vibrational fluctuations and treat explicitly the interaction of two linear dipolar 
molecules. As a model we choose the Morse oscillator whose potential is the 
Morse potential [4]. The reason for choosing this model is twofold: 

1) The Morse potential is an excellent representation of the potential energy of 
a diatomic molecule over virtually the entire range of distances except the tail end; 
2) The Morse potential is capable of yielding analytic expressions for the transi- 
tion dipole moments of the oscillator. 

In contrast to the electronic and rotational fluctuations, the vibrational fluctu- 
ations of many molecules are neither strictly classical nor strictly quantal, in 
which case the full quantum statistical formula given by Eq. (1) will be needed. 
The availability of an analytic expression for oL(oJ) greatly facilitates the evaluation 
of the interaction potential. 
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2. The Morse Oscillator 

The wave equation associated with the vibrational motion of a diatomic molecule, 
in which the rotational degrees of freedom are assumed frozen, can be written 

d2S.,v(r) 2ix [ E -  U(r)]S.,~(r) = 0 (2) 
d 7  + h ----ff 

where S.,v(r)= rR.,~(r) in which R.,~(r) is the radial part of the wave-function, 
which depends on the internuclear separation r and the electronic and vibrational 
quantum numbers n and v respectively. (Since we are not interested in the 
electronic motion here, we shall henceforth suppress the indices n). The potential 
chosen here is the Morse potential [4] 

U(r) = O{e-2a~r-r~ _ 2e-a~r-r~ (3) 

where ro is the equilibrium position, D the potential minimum and a is a constant. 
(/x and E are respectively the reduced mass and energy eigenvalue.) The para- 
meters D and a are so chosen as to yield the classical vibration frequency 

a 
uo = ~ (2D//x )l/2 (4a) 

in the limit of small displacements r - r0 .  The exact solution of Eq. (2) gives 

E ~ = - D + h a  (v 5 ) - - ~ - ( v +  �89 (4b) 

It is noted that the reference state is the state of the dissociated molecule. 

The differential equation (Eq. (2)) has been solved by means of 

1) Laguerre polynomials; 
2) confluent hypergeometric functions; 
3) factorization. 

The method of factorization [5] lends itself to producing analytic expressions 
for the transition dipole moments,  

Io mo,,-qr~o,=q &(r)r&,(r)dr (5) 

needed in the evaluation of the polarizability 1. Infeld and Hull [5] have derived 
an expression for a transition moment  of a quantity x, related to r as follows [6] 

x = - a  (r - ro) +In [(8txD)l/Z/(a h)]. 

Using their results we obtain 

lqr~ ,,~< , l=q 2 [v ' !F(2s -v '  + l) 
a ( v ' - v ) ( 2 s - v  - v ' )  l v IF (2s - v  +1) 

(6) 

(s --V)(S --v ')]  1/2 (7) 

1 The quantity q is an effective charge to be determined by equating qro to the experimental 
permanent dipole moment, fit 
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where 

(2t~D) 1/2 1 
s - ah  2" (8) 

The polarizability, as noted before, is likely to be neither strictly classical nor 
strictly quantal. The general expression for a(to) for positive frequencies, is [1] 

1 
a(to) =~--~ Y. [exp ( - E ~ / k T ) - e x p  (-Ev,/kT)]lqrov,[ 2 

1A,~A' 
~)t>l) 

X @ 2 2 i~ra( to - to~,~) (9)  
( . O r ,  v --03 

where ~ stands for the principal value when to~,~ = to; to~,~ = (E , , -E~) /h ,  and 
O = Y-o exp ( -Eo/kT) .  Along the imaginary axis, 

2 y/ (e_Eo/kr) to~,olqr~,vl 2 
= +(2~rkTh-*l) 2. (10) a (- iy,)  = ~ ~.v' to ~'o 

1J'>o 

3. The Vibrational Interaction Potential 

Since the Morse oscillators are linear oscillators we must adapt Eq. 1 to the 
interaction between such oscillators. Let  us assume that the line connecting the 
centers of the two molecules coincides with the Z-axis of the space-fixed coordin- 
ate systems and the orientations of the molecular axes with respect to this frame 
are 

S l = i x l + j y l + k z l  and S2=ix2+jy2+kz2.  (11) 

With respect to the space-fixed frame, the r appearing in the expression for the 
polarizability ai should be replaced by ri = r~& and ag by oL~ = aiSi&. Accordingly, 

tr (or1- T12" or2. T21) = ala2 tr ($1S1 �9 1"12" $2S2" T21). (12) 

The expression for T12 in the chosen frame is 

T12 = R-3[i i  +H - 2kk]. (13) 

Combining Eqs. (11), (12) and (13) gives 

OL 10~ 2 r 
tr (al  �9 T,2" oL2. T21) = ~ [xlx2 + y ly2 - 2z lz2] 2 / K  

~lOL2 r r  �9 ~ �9 
--  ~ t [ s l n  ~r s i n  02  c o s  ( t ~ l - ~ 2 ) - 2  c o s  81 c o s  02] 2} 

O/iC~2 
= R 6 f ( 0 1 ,  02 ,  ~ l - q ~ 2 )  (14) 

where (01, ~bl) and (02, ~2) are the orientation angles of the two molecules. 
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Finally, substitution into Eq. (lb) yields 

oO 

~ (2)_ _k__T y, al(-iyl)f(01, 02, t~l-t~2) (15) 
-- R 6 t = o  

which is explicit angle-dependent, as it should be since the rotational degrees 
of freedom are assumed frozen. [If averaged over the angles, f(01, 02, q51 -r = 
23. The ai(- iyt)  are the polarizabilities given by Eq. (10), and by virtue of Eq. 
(7) can be formulated in terms of the parameters q, a and s, and thus in terms 
of Vo, ro, ff~, D and /x. In the final analysis the evaluation of the interaction 
potential requires knowledge of the fundamental vibration frequency, equilib- 
rium distance, permanent moment, dissociation energy, and reduced mass, all 
of which are readily available from experimental data for most diatomic 
molecules. 

The potential given by Eq. (15) has the appearance of a dispersion potential, 
and might be called appropriately 'vibrational dispersion' potential. However, 
the C6-coefficient of this potential, i.e. 

q~2) = _C6R-6f(O1, 02, q~ l - -~2)  (15a) 

will generally be temperature-dependent not only because of its explicit depen- 
dence on T but also because of the T-dependence of the polarizabilities. 

4. Application to NaC! 

As an illustration of the method we apply the theory to the interaction between 
two NaC1 molecules. The calculations are based on the following set of data [7]: 
ro = 2.361x 10 -s cm, rh -= 9.002 Debye, Vo = 1.0930343 x 1013 sec -1, tz = 
2.3164407 x10-23 g, D=6 .8451334x10-12e rg ,  yielding the values q= 
3.8127911 x 10 -l~ esu, a = 8.9334315 x 107 cm -1 and s = 188.54808. 

Table 1 lists the values of C6 as a function of temperature. It is seen that C6 
varies rather strongly with temperatures which is a manifestation that in NaC1 
there is a substantial classical contribution to the vibrational dispersion potential. 
At  room temperature (T = 298.1) C6 = 3.788 x 10 -62 erg c m  6. This value, when 
multiplied by f(Oa, 02, ~bl-~b2) which ranges from 0 to 4, is about two to three 
orders of magnitude smaller than typical (electronic) dispersion energy 
coefficients and about one to two orders of magnitude smaller than typical 
orientation and induction energies. 

Thus, it would appear that the vibrationally produced Van der Waals forces are 
much smaller than the dispersion forces and also smaller than the orientation 

Table 1. Values of C6 for NaC1 as a function of temperature 

T (K) 100 200 298.1 400 500 600 700 

C6 • 1062 erg cm 6 1.734 2.622 3.788 5.083 6.392 7.729 9.093 
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forces. Nonetheless, in large molecules there are many degrees of vibrational 
freedom and if the molecules contain a large number of polar bonds or polar 
groups the cumulative effect of their vibrational interaction could conceivably 
overshadow the contribution from the orientation interaction. 
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